Friday, 28 April 2017

TGI Friday! Our weekly round-up of recently published research abstracts | 28 April 2017

From Microbiome (open access), 26 April 2017.

Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome

Dorottya Nagy-Szakal(1)†, Brent L. Williams(1)†, Nischay Mishra(1), Xiaoyu Che(1), Bohyun Lee(1), Lucinda Bateman(2), Nancy G. Klimas(3,4), Anthony L. Komaroff(5), Susan Levine(6), Jose G. Montoya, Daniel L. Peterson(7), Devi Ramanan(8), Komal Jain(1), Meredith L. Eddy(1), Mady Hornig(1) and W. Ian Lipkin(1).
1. Center for Infection and Immunity, Columbia University Mailman School of Public Health
2. Fatigue Consultation Clinic
3. Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University
4. Miami VA Medical Center
5. Brigham and Women’s Hospital, Harvard Medical School
6. Levine Clinic
7. Stanford University
8. Ayasdi, Inc.

†Contributed equally

Abstract

BACKGROUND

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained persistent fatigue, commonly accompanied by cognitive dysfunction, sleeping disturbances, orthostatic intolerance, fever, lymphadenopathy, and irritable bowel syndrome (IBS). The extent to which the gastrointestinal microbiome and peripheral inflammation are associated with ME/CFS remains unclear. We pursued rigorous clinical characterization, fecal bacterial metagenomics, and plasma immune molecule analyses in 50 ME/CFS patients and 50 healthy controls frequency-matched for age, sex, race/ethnicity, geographic site, and season of sampling.

RESULTS

Topological analysis revealed associations between IBS co-morbidity, body mass index, fecal bacterial composition, and bacterial metabolic pathways but not plasma immune molecules. IBS co-morbidity was the strongest driving factor in the separation of topological networks based on bacterial profiles and metabolic pathways. Predictive selection models based on bacterial profiles supported findings from topological analyses indicating that ME/CFS subgroups, defined by IBS status, could be distinguished from control subjects with high predictive accuracy. Bacterial taxa predictive of ME/CFS patients with IBS were distinct from taxa associated with ME/CFS patients without IBS. Increased abundance of unclassified Alistipes and decreased Faecalibacterium emerged as the top biomarkers of ME/CFS with IBS; while increased unclassified Bacteroides abundance and decreased Bacteroides vulgatus were the top biomarkers of ME/CFS without IBS. Despite findings of differences in bacterial taxa and metabolic pathways defining ME/CFS subgroups, decreased metabolic pathways associated with unsaturated fatty acid biosynthesis and increased atrazine degradation pathways were independent of IBS co-morbidity. Increased vitamin B6 biosynthesis/salvage and pyrimidine ribonucleoside degradation were the top metabolic pathways in ME/CFS without IBS as well as in the total ME/CFS cohort. In ME/CFS subgroups, symptom severity measures including pain, fatigue, and reduced motivation were correlated with the abundance of distinct bacterial taxa and metabolic pathways.

CONCUSIONS

Independent of IBS, ME/CFS is associated with dysbiosis and distinct bacterial metabolic disturbances that may influence disease severity. However, our findings indicate that dysbiotic features that are uniquely ME/CFS-associated may be masked by disturbances arising from the high prevalence of IBS co-morbidity in ME/CFS. These insights may enable more accurate diagnosis and lead to insights that inform the development of specific therapeutic strategies in ME/CFS subgroups.


Cochrane Database Systematic Review, 25 April 2017 (e-published ahead of print).

Exercise therapy for chronic fatigue syndrome.

Larun L, Brurberg KG, Odgaard-Jensen J, Price JR.

Abstract

BACKGROUND

Chronic fatigue syndrome (CFS) is characterised by persistent, medically unexplained fatigue, as well as symptoms such as musculoskeletal pain, sleep disturbance, headaches and impaired concentration and short-term memory. CFS presents as a common, debilitating and serious health problem. Treatment may include physical interventions, such as exercise therapy, which was last reviewed in 2004.

OBJECTIVES

The objective of this review was to determine the effects of exercise therapy (ET) for patients with CFS as compared with any other intervention or control.

• Exercise therapy versus ‘passive control’ (e.g. treatment as usual, waiting-list control, relaxation, flexibility).

• Exercise therapy versus other active treatment (e.g. cognitive-behavioural therapy (CBT), cognitive treatment, supportive therapy, pacing, pharmacological therapy such as antidepressants).

• Exercise therapy in combination with other specified treatment strategies versus other specified treatment strategies (e.g. exercise combined with pharmacological treatment vs pharmacological treatment alone).

SEARCH METHODS

We searched The Cochrane Collaboration Depression, Anxiety and Neurosis Controlled Trials Register (CCDANCTR), the Cochrane Central Register of Controlled Trials (CENTRAL) and SPORTDiscus up to May 2014 using a comprehensive list of free-text terms for CFS and exercise.

We located unpublished or ongoing trials through the World Health Organization (WHO) International Clinical Trials Registry Platform (to May 2014). We screened reference lists of retrieved articles and contacted experts in the field for additional studies

SELECTION CRITERIA

Randomised controlled trials involving adults with a primary diagnosis of CFS who were able to participate in exercise therapy. Studies had to compare exercise therapy with passive control, psychological therapies, adaptive pacing therapy or pharmacological therapy.

DATA COLLECTION AND ANALYSIS

Two review authors independently performed study selection, risk of bias assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) and standardised mean differences (SMDs). We combined serious adverse reactions and drop-outs using risk ratios (RRs). We calculated an overall effect size with 95% confidence intervals (CIs) for each outcome.

MAIN RESULTS

We have included eight randomised controlled studies and have reported data from 1518 participants in this review. Three studies diagnosed individuals with CFS using the 1994 criteria of the Centers for Disease Control and Prevention (CDC); five used the Oxford criteria. Exercise therapy lasted from 12 to 26 weeks.

Seven studies used variations of aerobic exercise therapy such as walking, swimming, cycling or dancing provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, whilst one study used anaerobic exercise. Control groups consisted of passive control (eight studies; e.g. treatment as usual, relaxation, flexibility) or CBT (two studies), cognitive therapy (one study), supportive listening (one study), pacing (one study), pharmacological treatment (one study) and combination treatment (one study).

Risk of bias varied across studies, but within each study, little variation was found in the risk of bias across our primary and secondary outcome measures.

Investigators compared exercise therapy with ‘passive’ control in eight trials, which enrolled 971 participants. Seven
studies consistently showed a reduction in fatigue following exercise therapy at end of treatment, even though the fatigue scales used different scoring systems: an 11-item scale with a scoring system of 0 to 11 points (MD -6.06, 95% CI -6.95 to -5.17; one study, 148 participants; low-quality evidence); the same 11-item scale with a scoring system of 0 to 33 points (MD -2.82, 95% CI -4.07 to -1.57; three studies, 540 participants; moderate-quality evidence); and a
14-item scale with a scoring system of 0 to 42 points (MD -6.80, 95% CI -10.31 to -3.28; three studies, 152 participants; moderate-quality evidence).

Serious adverse reactions were rare in both groups (RR 0.99, 95% CI 0.14 to 6.97; one study, 319 participants; moderate-quality evidence), but sparse data made it impossible for review authors to draw conclusions. Study authors reported a positive effect of exercise therapy at end of treatment with respect to sleep (MD -1.49, 95% CI -2.95 to -0.02; two studies, 323 participants), physical functioning (MD 13.10, 95% CI 1.98 to 24.22; five studies, 725 participants) and self-perceived changes in overall health (RR 1.83, 95% CI 1.39 to 2.40; four studies, 489 participants).

It was not possible for review authors to draw conclusions regarding the remaining outcomes.Investigators compared exercise therapy with CBT in two trials (351 participants). One trial (298 participants) reported little or no difference in fatigue at end of treatment between the two groups using an 11-item scale with a scoring system of 0 to 33 points (MD 0.20, 95% CI -1.49 to 1.89). Both studies measured differences in fatigue at follow-up, but neither found differences between the two groups using an 11-item fatigue scale with a scoring system of 0 to 33 points (MD 0.30, 95% CI -1.45 to 2.05) and a nine-item Fatigue Severity Scale with a scoring system of 1 to 7 points (MD 0.40, 95% CI
-0.34 to 1.14).

Serious adverse reactions were rare in both groups (RR 0.67, 95% CI 0.11 to 3.96). We observed little or no difference in physical functioning, depression, anxiety and sleep, and we were not able to draw any conclusions with regard to pain, self-perceived changes in overall health, use of health service resources and drop-out rate.

With regard to other comparisons, one study (320 participants) suggested a general benefit of exercise over adaptive
pacing, and another study (183 participants) a benefit of exercise over supportive listening. The available evidence was too sparse to draw conclusions about the effect of pharmaceutical interventions.

AUTHORS’ CONCLUSIONS

Patients with CFS may generally benefit and feel less fatigued following exercise therapy, and no evidence suggests
that exercise therapy may worsen outcomes. A positive effect with respect to sleep, physical function and self-perceived general health has been observed, but no conclusions for the outcomes of pain, quality of life, anxiety, depression, drop-out rate and health service resources were possible.

The effectiveness of exercise therapy seems greater than that of pacing but similar to that of CBT. Randomised
trials with low risk of bias are needed to investigate the type, duration and intensity of the most beneficial exercise intervention.



from ME Association
http://ift.tt/2oDluIf

from http://ift.tt/1yk3j57

#cfsme

No comments:

Post a Comment